Saturday, 12 April 2014

       Managerial Economics Numerical's and  Solutions 



CHAPTER 2
OPTIMIZATION TECHNIQUES AND NEW MANAGEMENT TOOLS

1. A firm's demand function is defined as Q = 14 − 2P. Use this function to calculate total revenue when price is equal to 3 and when price is equal to 4. What is marginal revenue equal to between P = 3 and P = 4?

Solution:
Q = 14 − (2)(4) = 6 so total revenue is (6)(4) = $24
Q = 14 − (2)(3) = 8 so total revenue is (8)(3) = $24
Marginal revenue is 0.

2. A firm's demand function is defined as Q = 30 − P. Use this function to calculate total revenue when price is equal to 5 and when price is equal to 6. What is marginal revenue equal to between P = 5 and P = 6?

Solution:
Q = 30 − 5 = 25 so total revenue is (25)(5) = $125
Q = 30 − 6 = 24 so total revenue is (24)(6) = $144
Marginal revenue is $19.

3. A firm's demand function is defined as Q = 30 − 2P. Use this function to calculate total revenue when price is equal to 10 and when price is equal to 11. What is marginal revenue equal to between P = 10 and P = 11?

Solution:
Q = 30 − (2)(10) = 10 so total revenue is (10)(10) = $100
Q = 30 − (2)(11) = 8 so total revenue is (8)(11) = $88
Marginal revenue is −$6.

4. Use the production relationship between total product (Q) and units of labor (L) employed that is presented in the table below to calculate the average and marginal product of labor when L = 5.
L      1  2  3   4      5   6    7   8   9
Q     3 7 13  17 20  22 23 23 22
Solution:
Average product = 20/5 = 4
Marginal product = 20 − 17 = 3

5. Use the total cost (TC) schedule that is presented in the table below to calculate average total cost, average variable cost, average fixed cost, and marginal cost when output (Q) is equal to 5.
Q       0 1   2   3    4    5    6    7    8    9
TC     5 7   8  10  14  20 28  38  50  72

Solution:
Average total cost = 20/5 Average variable cost = (20 − 5)/5 = 3
Average fixed cost = 5/5 = 1 Marginal cost = (20 − 14)/(5 − 4) = 6

6. Use the total cost (TC) schedule that is presented in the table below to determine the optimal rate of production when the firm can sell all of the output it produces at a price of $10 per unit. Also determine the level of profit (or loss) that the firm will experience at this level of output.
Q     0  1  2   3    4     5   6   7    8    9
TC   5  7  8  10  14  20 28 38  50 72

Solution:
Q       1   2   3  4  5  6   7     8   9
MC    2   1   2  4  6  8  10  12  22
The firm should produce Q = 7. Its profit will be (7)(10) − 38 = $32.

7. Use the total cost (TC) schedule that is presented in the table below to determine the optimal rate of production when the firm can sell all of the output it produces at a price of $6 per unit. Also determine the level of profit (or loss) that the firm will experience at this level of output.
Q                0    1     2    3   4      5   6    7    8    9
TC             15  17  18  20  24  30  38  48  60  82

Solution:
Q          1  2  3  4  5  6   7    8    9
MC       2  1  2  4  6  8  10  12 22
The firm should produce Q = 5. Its profit will be (5)(6) − 30 = 0.
8. Use the demand schedule that is presented in the table below to determine the optimal rate of production and price when the firm has a constant marginal cost of $10 per unit.
Quantity     1   2   3   4    5   6    7   8   9  10
Price          80 60 48 40 34 29 25 20 15 10

Solution:
Quantity      1       2       3      4     5        6      7       8      9    10
TR                80  120  144  160  170  174  175  160  135  100
MR              80    40     24     16   10    4 1   -15   -25   -35
The firm should produce Q = 5.

9. Use the demand schedule that is presented in the table below to determine the optimal rate of production and price when the firm has the following marginal cost function:
MC = 1 + Q/2.
Quantity      1   2   3   4   5    6   7   8   9  10
Price           80 60 48 40 34 29 25 20 15 10

Solution:
Quantity          1        2       3        4       5        6       7       8        9      10
TR                    80   120   144   160   170   174   175   160   135   100
MR                  80      40     24     16      10      4         1   -15    -25    -35
MC                  1.5        2     2.5     3      3.5     4       4.5     5     5.5       6
The firm should produce Q = 6.

10. A firm's demand function is defined as Q = 20 − 2P. Use this function to calculate total revenue when price is equal to 3 and when price is equal to 4. What is marginal revenue equal to between P = 3 and P = 4?

Solution:
Q = 20 − (2)(4) = 12 so total revenue is (12)(4) = $48
Q = 20 − (2)(3) = 14 so total revenue is (14)(3) = $42
Marginal revenue is (48 − 42)/(12 − 14) = −3.

11. A firm's demand function is defined as Q = 40 − P. Use this function to calculate total revenue when price is equal to 5 and when price is equal to 6. What is marginal revenue equal to between P = 25 and P = 26?

Solution:
Q = 40 − 25 = 15 so total revenue is (15)(25) = $375
Q = 40 − 26 = 14 so total revenue is (14)(26) = $364
Marginal revenue is (375 − 364)/(15 − 14) = 11.

12. A firm's demand function is defined as Q = 100 − 5P. Use this function to calculate total revenue when price is equal to 10 and when price is equal to 12. What is marginal revenue equal to between P = 10 and P = 12?

Solution:
Q = 100 − (5)(10) = 50 so total revenue is (10)(50) = $500.
Q = 100 − (5)(12) = 40 so total revenue is (12)(40) = $480.
Marginal revenue is (500 − 480)/(50 − 40) = 2.

13. Use the production relationship between total product (Q) and units of labor (L) employed that is presented in the table below to calculate the average and marginal product of labor when Q = 4.
L          1   2  3    4     5    6    7    8     9
Q        2   5  11  16  20  22  23  23  22

Solution:
Average product = 16/4 = 4
Marginal product = 16 − 11 = 5

14. Use the total cost (TC) schedule that is presented in the table below to calculate average total cost, average variable cost, average fixed cost, and marginal cost when output (Q) is equal to 4.
Q     0  1  2   3   4    5     6    7    8     9
TC   3  6  8  11 15  20  26  34  55  70

Solution:
Average total cost = 15/4 = 4.25 Average variable cost = (14 − 3)/4 = 2.75
Average fixed cost = 3/4 = 0.75 Marginal cost = (15 − 11)/(4 − 3) = 4

15. Use the total cost (TC) schedule that is presented in the table below to determine the optimal rate of production when the firm can sell all of the output it produces at a price of $6 per unit. Also determine the level of profit (or loss) that the firm will experience at this level of output.
Q      0   1  2   3     4    5    6    7    8    9
TC    3   6  8  11  15  20  26  34  55  70

Solution:
Q        1   2   3   4   5   6   7    8    9
MC     3   2   3   4   5   6   8  11  15
The firm should produce Q = 6. Its profit will be (6)(6) − 26 = $10.

16. Use the total cost (TC) schedule that is presented in the table below to determine the optimal rate of production when the firm can sell all of the output it produces at a price of $8 per unit. Also determine the level of profit (or loss) that the firm will experience at this level of output.
Q         0    1     2    3    4    5    6    7     8    9
TC      15  17  18  20  24  30  38  48  60  82

Solution:
Q        1   2   3   4   5   6    7    8    9
MC     2   1   2   4   6   8  10  12  22
The firm should produce Q = 6. Its profit will be (6)(8) − 38 = 10.

17. Use the demand schedule that is presented in the table below to determine the optimal rate of production and price when the firm has a constant marginal cost of $16 per unit.
Quantity     1    2     3    4    5    6    7     8    9   10
Price           80 60  48  40  34  29  25  20  15   10

Solution:
Quantity      1        2       3       4      5        6      7       8      9      10
TR                80  120   144   160  170   174  175  160  135   100
MR              80    40      24     16    10        4      1  −15  −25    −35
The firm should produce Q = 4.

18. Use the demand schedule that is presented in the table below to determine the optimal rate of production and price when the firm has the following marginal cost function:
MC = 1 + Q.
Quantity        1    2     3    4     5    6     7    8     9   10
Price             80  60  48   40  34  29  25   20  15   10

Solution:
Quantity        1      2       3       4        5       6       7       8        9    10
TR                 80  120  144   160   170   174   175   160   135  100
MR                80    40    24     16     10        4        1   −15   −25  −35
MC                  2       3      4       5        6        7        8       9     10     11
The firm should produce Q = 5.

19. A firm's demand function is Q = 16 − P and its total cost function is defined as TC = 3 + Q + 0.25Q2. Use these two functions to form the firm's profit function and then determine the level of output that yields the profit maximum. What is the level of profit at the optimum?

Solution:
TR = 16Q Q2 so profit = (16Q Q2) − (3 + Q + 0.25Q2) = −3 + 15Q − 1.25Q2
Using calculus: dProfit/dQ = 15 − 2.5Q = 0 implies Q = 6 and the second derivative is −2.5, which implies that Q = 6 is a maximum.
Profit = −3 + (15)(6) − (1.25)(36) = 42
An alternative method of solution can be applied by noting that MC = 1 + Q/2 and MR = 16 − 2Q and then setting the two equal to each other.

20. A firm's demand function is Q = 40 − 2P and its total cost function is defined as TC = 100 + 2Q + 0.25Q2. Use these two functions to form the firm's profit function and then determine the level of output that yields the profit maximum. What is the level of profit at the optimum level of output?

Solution:
TR = 20Q − 0.5Q2 so
Profit = (20Q − 0.5Q2) − (100 + 2Q + 0.25Q2) = −100 + 18Q − 0.75Q2
Using calculus: dProfit/dQ = 18 − 1.5Q = 0 implies Q = 12 and the second derivative is −1.5, which implies that Q = 12 is a maximum.
Profit = −100 + (18)(12) − (0.75)(144) = 8
An alternative method of solution can be applied by noting that MC = 2 + Q/2 and MR = 20 − Q and then setting the two equal to each other.
t=studaren-20&o=1&p=12&l=ur1&category=amazonhomepage&f=ifr" width="300" height="250" scrolling="no" border="0" marginwidth="0" style="border:none;" frameborder="0">

No comments:

Post a Comment